Neural crest development is regulated by the transcription factor Sox9.

نویسندگان

  • Martin Cheung
  • James Briscoe
چکیده

The neural crest is a transient migratory population of stem cells derived from the dorsal neural folds at the border between neural and non-neural ectoderm. Following induction, prospective neural crest cells are segregated within the neuroepithelium and then delaminate from the neural tube and migrate into the periphery, where they generate multiple differentiated cell types. The intrinsic determinants that direct this process are not well defined. Group E Sox genes (Sox8, Sox9 and Sox10) are expressed in the prospective neural crest and Sox9 expression precedes expression of premigratory neural crest markers. Here, we show that group E Sox genes act at two distinct steps in neural crest differentiation. Forced expression of Sox9 promotes neural-crest-like properties in neural tube progenitors at the expense of central nervous system neuronal differentiation. Subsequently, in migratory neural crest cells, SoxE gene expression biases cells towards glial cell and melanocyte fate, and away from neuronal lineages. Although SoxE genes are sufficient to initiate neural crest development they do not efficiently induce the delamination of ectopic neural crest cells from the neural tube consistent with the idea that this event is independently controlled. Together, these data identify a role for group E Sox genes in the initiation of neural crest development and later SoxE genes influence the differentiation pathway adopted by migrating neural crest cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development.

In neural crest formation, transcription factors, such as group E Sox and Snail1/Snail2 (Slug) regulate subsequent epithelial-mesenchymal transition (EMT) and migration. In particular, Sox9 has a strong effect on neural crest formation, EMT and differentiation of crest-derived cartilages in the cranium. It remains unclear, however, how Sox9 functions in these events, and how Sox9 activity is re...

متن کامل

Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling.

Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, th...

متن کامل

Functional analysis of Sox8 during neural crest development in Xenopus.

Among the families of transcription factors expressed at the neural plate border, Sox proteins have been shown to regulate multiple aspects of neural crest development. Sox8, Sox9 and Sox10, exhibit overlapping expression domains in neural crest progenitors, and studies in mouse suggest that Sox8 functions redundantly with Sox9 and Sox10 during neural crest development. Here, we show that in Xe...

متن کامل

Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene

Understanding the biological pathways critical for common neurofibromatosis type 1 (NF1) peripheral nerve tumours is essential, as there is a lack of tumour biomarkers, prognostic factors and therapeutics. We used gene expression profiling to define transcriptional changes between primary normal Schwann cells (n = 10), NF1-derived primary benign neurofibroma Schwann cells (NFSCs) (n = 22), mali...

متن کامل

Notch signaling is required for the chondrogenic specification of mouse mesencephalic neural crest cells

We examined the roles of Notch signaling in the chondrogenesis of mouse mesencephalic neural crest cells. The present study demonstrated that the activation of Notch signaling or the treatment with fibroblast growth factors (FGFs) promotes the differentiation of proliferative and prehypertrophic chondrocytes expressing collagen type II. Notch activation or FGF2 exposure during the first 24h in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 23  شماره 

صفحات  -

تاریخ انتشار 2003